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Learning to rank Higgs boson 
candidates
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Christian Schmitt1 & Stefan Kramer1

In the extensive search for new physics, the precise measurement of the Higgs boson continues 
to play an important role. To this end, machine learning techniques have been recently applied 
to processes like the Higgs production via vector-boson fusion. In this paper, we propose to use 
algorithms for learning to rank, i.e., to rank events into a sorting order, first signal, then background, 
instead of algorithms for the classification into two classes, for this task. The fact that training is then 
performed on pairwise comparisons of signal and background events can effectively increase the 
amount of training data due to the quadratic number of possible combinations. This makes it robust 
to unbalanced data set scenarios and can improve the overall performance compared to pointwise 
models like the state-of-the-art boosted decision tree approach. In this work we compare our 
pairwise neural network algorithm, which is a combination of a convolutional neural network and the 
DirectRanker, with convolutional neural networks, multilayer perceptrons or boosted decision trees, 
which are commonly used algorithms in multiple Higgs production channels. Furthermore, we use 
so-called transfer learning techniques to improve overall performance on different data types.

In the summer of 2012, a possible candidate for the Higgs boson was discovered by the  ATLAS1 and  CMS2 
experiments at the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN)3. 
Assuming the observed particle is the Higgs boson predicted by the Standard Model of particle physics (SM), it 
would complete the SM to a self-consistent theory. The SM is currently the best description for physics at suba-
tomic scales, and it explains most particle physics experiments of the past century. However, a few experimental 
observations are unexplained by the SM, e.g. the existence of dark matter in our  universe4. An ongoing effort is 
therefore to establish limitations of the SM by investigating all of its parts thoroughly. One approach is the precise 
measurement of properties of the newly discovered Higgs boson, for example through the measurements of Higgs 
production events via vector boson fusion (VBF)5. Since this production channel is overwhelmingly dominated 
by background events, finding efficient ways to separate them from signal events is crucial.

Since the measured data in the experiment are not labeled and different processes can look very similar in 
the detector data, it is crucial to find criteria for their distinction on simulated data, for which the corresponding 
process is known. Typically, this is achieved by first simulating the physical process via Monte-Carlo  generators6–8. 
In practice, one only works on these simulated data in order to find ways to classify the process of interest from 
the detector data. The data measured in the detector follows distinct, overlapping distributions for different 
physical processes. This leads to the problem that single measurements of different processes can be identical, 
such that they cannot be distinguished. In order to maximize the certainty with which the processes are classified, 
machine learning methods are trained on simulated data to classify signal and background events, i.e. events 
corresponding to the process of interest (in our case the Higgs Boson production via VBF), and those which have 
similar signature (for example tt̄ in our case)9,10. After training these machine learning methods on simulated 
data, these models can then be applied to experimentally acquired data and simulated data. In order to analyze the 
experimental data, the number of measured processes, classified as signal, is compared to the expected number 
from the simulations. In such experiments it is common practice to only consider the simulated data to fix the 
model. Only when every part of classification chain is settled the methods are applied to blinded experimentally 
acquired data. This procedure reduces biased selection of data and p-hacking and has the further advantage that 
on simulated data it is known which event belongs to which process. More information on the statistical methods 
applied in high energy particle physics can be found in the paper by  Cranmer11. A crucial part in this analysis 
workflow is to develop specialized algorithms that are well-suited for the data at hand.

As the number of measured data points corresponding to an event including a Higgs boson (a signal event) 
is extremely small compared to background events, learning to rank techniques can be applied to increase the 
statistical variation of a data set. This is done by using pairs of signal and background events during  training12, 
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which effectively increases the number of training instances quadratically by using all possible combinations of 
events. In general, models that address the learning to rank problem sort a list of n documents (in the follow-
ing we use the terms documents and instances synonymously) by their relevance with respect to some query. 
These models can be separated into three categories according to whether the objective function is computed 
by considering one, two or a whole list of documents during training. The first approach is called pointwise and 
is analogous to classifying each  document13–15 in the sense that a score is predicted on each query-document 
pair, indicating the relevance of that specific document according to the query. In the pairwise approach, the 
model attempts to learn the more relevant document out of a pair of two for a given  query16,17. The last approach 
is called listwise, where a whole list is used to compute the cost during  training18,19. It is possible to extend 
many classification algorithms to the ranking problem, such as decision  trees17, support vector  machines20, 
artificial neural  networks18 and ensemble  boosting21. More recently it has been shown that the DirectRanker, a 
 generalization12 of the pairwise learning approach  RankNet16, outperforms several state-of-the-art methods on 
listwise metrics while needing substantially less training time on pure ranking tasks. This learning algorithm has 
been proven to be able to learn a total quasiorder on a broad variety of feature spaces by employing a Siamese 
structured network architecture that inherently guarantees such an order. The model has been used in several 
different contexts such as learning fair representations on biased data  sets22,23, for detection of humor in natural 
 language24 or ranking structured  objects25.

In current publications about Higgs boson measurements, boosted decision trees (BDT)17,26 or multilayer 
perceptrons (MLP) are typically used to separate signal and background  events9,10. Specifically in the VBF chan-
nel, current publications make use of deep neural  networks27 and convolutional neural networks (CNNs)28. We 
show that by using CNNs in combination with the pairwise ranking method DirectRanker, we can outperform 
current state-of-the-art methods in this field considerably.

Another important aspect to consider is the computational cost of the training data generation. While a full 
simulation of the interactions of particles with the detector is computationally expensive, it is possible to per-
form cheaper, simplified simulations which approximate the full interactions. We therefore investigate transfer 
learning  techniques29–31, which allows pre-training of models using approximate larger data sets that are easily 
generated and subsequently retraining them on smaller, more precise data sets. We emulate this here by using 
data sets that are generated with slightly different parameters.

In summary, the contributions of this paper are as follows: 

 i. We show that the DirectRanker can be used for the separation of Higgs and background events within the 
vector boson fusion channel. Moreover, the DirectRanker can be used in combination with convolutional 
neural networks with significant improvements over state-of-the-art methods.

 ii. We perform experiments evaluating the model performance on different signal-to-background ratios and 
perform comparisons to state-of-the-art machine learning models to illustrate the benefits and use cases 
of our approach.

 iii. We investigate how the performance of numerous models depends on their complexities.
 iv. We show that pre-training a convolutional neural network and retraining it on data with a slightly different 

distribution can increase the overall performance when combining convolutional neural networks and 
the DirectRanker approache.This technique could be used to pretrain on data that are cheap to generate 
and decrease computation time in data generation and training and increase overall performance.

Results
This section covers the results of the performed experiments. Subsequently, the benefits of our approach com-
pared to state-of-the-art algorithms on different signal-to-background ratios and on different model complexities 
are shown. We also show the results of a retraining approach with the goal of improving the performance on a 
complete and realistic detector simulation. Finally, a grid search is performed on different data sets to quantify 
the overall model performance.

Data set and model complexity analysis results. In Fig. 1a, one can see that the performance of the 
CNN increases constantly from low signal to background ratios up to an equal amount of signal and back-
ground. The CNN + DirectRanker approach works better than the CNN if the ratio is between 10−2 and 10−1 , 
while outside that range the CNN gives better results. For the DirectRanker, however, one observes a constant 
performance across the whole ratio spectrum with the possible exception of the smallest signal-to-background 
ratios. The MLP has the same performance as the DirectRanker, but the performance drops if the ratio of signal 
and background is too low. Overall, the DirectRanker and the MLP have a lower performance than the CNN + 
DirectRanker and CNN.

The CNN + DirectRanker used in this experiment had a higher minimal complexity than the other models, 
which makes it hard to train on small amounts of data. Since the DirectRanker has only a low complexity and 
makes better use of the statistics through pair building, it still performs well on small signal to background ratios, 
since the possibility of overfitting is lower than for more complex models. Nevertheless, looking at the results for 
the complexity analysis, one can lower the complexity and still perform well and reduce computational overhead 
with all models. In Fig. 1b, these results are shown. Note that the complexity of the CNN + DirectRanker model 
cannot be reduced further than is shown in the plot. The CNN + DirectRanker always performs better than 
the other models for a given complexity. As for the other models, we observe that the performance of the CNN 
increases with the model complexity, while the DirectRanker and the MLP display a consistent performance for 
a wide range of model complexities. However, their performance drops suddenly after they reached a certain 
complexity. This behavior could be explained by overfitting the training data.
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Finding the “sweet spot” of model complexity and signal-to-background ratio is crucial to perform well. Our 
results suggest that the CNN and the CNN + DirectRanker are suitable candidates for improving vector boson 
fusion searches.

Transfer learning results. Table 1 is showing the retraining results for the different data sets which are 
described in detail in the model section. The results indicate that the retrained model outperforms the CNN + 
DirectRanker while looking at the data with the changed magnetic field (ATLAS-2.1T). Having the CMS detec-
tor or WW2j/Z2j events as precise data sets, the retrained model performs similarly to the CNN + DirectRanker. 
Overall, this approach shows that the performance of a model trained on precise data can be improved by first 
training on cheap imprecise data and then retraining the model on precise data. Furthermore, one can save 
training time since, once the model is pre-trained, it only needs to be fed with precise data, which can be of 
various kind.

Overall model performance results. In Fig. 2, the results of different data sets with tt̄ background and 
Higgs signal data are shown. For the experiments on the Kaggle Higgs boson challenge and on the tests with a 
balanced train and test data, the CNN + DirectRanker outperforms all other models. For the test with unbal-
anced training data and balanced test data, the CNN outperforms the other methods. These excellent results 
consolidate our statement in favor of CNN + DirectRanker and CNN for vector boson fusion searches, since 
both models are capable of outperforming other state-of-the-art models.

Figure 1.  Performance of different machine learning models evaluated using the Z0 metric in a fivefold cross-
validation. In (a), the models are trained on different signal and background ratios and tested on an equal 
number of signal and background events. An overview of the generated data set can be found in Table 2 in the 
experimental setup. In (b), the model complexity is increased while using the balanced data set for training and 
testing. We tested a convolutional neural network (CNN), a multilayer perceptron (MLP), the DirectRanker, and 
its combination with convolutional layers (CNN + DirectRanker).

Table 1.  Results of the transfer learning experiments. The first column of the table shows the generated precise 
data sets. By calculating the mean of the Kolmogorov–Smirnov32 (KS) test over all 32 features, the similarity 
of the precise data to imprecisely generated tt̄ and Higgs events is shown in brackets. For the precise data 
sets, we generated tt̄ and Higgs events with the CMS detector (CMS detector), tt̄ and Higgs events with the 
ATLAS detector having a 2.1T magnetic field (ATLAS-2.1T) and WW2j/Z2j events with the ATLAS detector. 
The imprecise generated data uses the normal ATLAS detector. The other two columns show the models we 
compare to our retrained model. Both models are only trained and cross-validated on the precise data sets. 
Therefore, we use the CNN and the CNN + DirectRanker model. For our retrained model, we first trained 
CNN layers on imprecisely generated tt̄ and Higgs data and then we retrained the full CNN + DirectRanker 
model on a subsample of the precise data sets. The results for this is shown in the last column. For all model 
results we report the Z0 metric.

Precise data sets (KS Values) CNN CNN + DirectRanker Retrained CNN + DirectRanker

CMS detector (0.003) 2.236± 0.013 Z0 2.377± 0.015 Z0 2.387± 0.008 Z0
ATLAS-2.1T (0.018) 2.288± 0.020 Z0 2.348± 0.026 Z0 2.357± 0.030 Z0
WW2j/Z2j background (0.002) 2.433± 0.023 Z0 2.787± 0.033 Z0 2.763± 0.025 Z0
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Discussion
The results presented above show that our approach of using a ranking based machine learning model performs 
well on simulated ATLAS data for the vector boson fusion channel. The simple DirectRanker model outperforms 
a MLP in the case of a very unbalanced data sets, see Fig. 1a, with a low number of signal events. This is illustrat-
ing one of the strengths of this approach due to the effective increase of training set size by pairwise training. 
While a pure CNN model outperforms the DirectRanker in almost all cases, our results show that a combina-
tions of the two methods, the CNN+DirectRanker model, can increase overall performance, see Fig. 1a,b. This 
is especially evident for low complexities, i.e. for a low number of trainable parameters, indicating that with this 
approach a simpler model can achieve the same performance as a more complex CNN model.

Our results of the overall model performance after conducting a thorough grid search for hyperparameter 
optimization show that for a balanced data set our CNN+DirectRanker model outperforms all other models 
tested here, including state-of-the-art methods like BDTs and MLPs. We have used these two methods as a com-
parison since BDTs are one of the most widely used methods for the classification of high energy physics detector 
 data9,10 and MLPs are one of the most promising candidates to further improve performance in this  field27. It is 
important to note that we had to re-implement these models and optimized their hyperparameters to compare 
them to our methods. The relevant publications do not provide the necessary code and documentation to simply 
reproduce their results and the experimental setups are usually not directly comparable. Furthermore, the data 
being used in these publications is rarely publicly available. We are therefore convinced, that our method of imple-
menting all models from scratch and performing most experiments on data we generated using commonly used 
simulation  applications7,8,34,35, offers the best comparability. Nevertheless, we additionally performed experiments 
on data from the Kaggle Higgs boson  challenge33 which quantitatively agrees well with our other experiments.

Another interesting possibility in our CNN+DirectRanker model is illustrated in the results using 
transfer learning. We show that by pre-training the CNN part on some data and subsequently training the 
CNN+DirectRanker on data which is from a slightly different distribution we can outperform the not pre-trained 
model in some cases. This can be interesting in cases where data from one distribution is cheap to generate and 
data from the other is more expensive to generate, as is often the case in high energy physics data. While the 
performance gain is not very large, this approach offers a further benefit by possibly reducing training time. Once 
a pre-trained CNN model is available the full model can be quickly trained again on various kinds of data. It is 
important to note that our results on this topic do not necessarily show the full potential of this method. The data 
sets for pre-training are chosen somewhat arbitrarily, experiments on actual more precise detector simulations 
for the ATLAS experiment would probably be more conclusive. Another interesting use case is the retraining 
with different backgrounds. In the physical context, this allows to refine the results later into an existing analysis 
by introducing more background processes which were previously neglected.

Our work shows that the DirectRanker and especially the combination of CNN+DirectRanker is a promising 
machine learning approach for ranking high energy physics detector data. This is interesting both because of the 
high performance compared to other state-of-the-art methods and due to the novel network architecture. Our 
results agree well with the original presentation of the  DirectRanker12 showing high performance on unbalanced 
data and low complexity models. This performance furthermore remains stable over a wide range of model 
complexities. We also exploit the possibility of flexibly expanding this original DirectRanker model with more 
complex approaches like CNNs as envisioned in the original publication. While these points are some of the 

Figure 2.  Results of the grid search on tt̄ background and Higgs signal data. The performance of the models 
is measured by Z0 and AUC. The models are trained and tested on different data sets. The models marked with 
⊲ are trained on unbalanced and tested on balanced data. The ones shown with × are trained and tested on the 
Kaggle Higgs boson  challenge33. The ones plotted with � are trained and tested on balanced data.
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main strengths the combination of CNNs and the DirectRanker make the model somewhat more complicated 
and add further hyperparameter combinations to be adjusted simultaneously. This means that the design of the 
network architecture becomes more intricate and more care has to be taken in the hyperparameter optimization.

In summary, we see the following strengths and weaknesses in our presented methods: 

+  Our model shows high performance compared to state-of-the-art methods independent of the data set size, 
even if the model complexity is low.

+  By introducing a novel approach (CNN+DirectRanker), we showed that optimizing the model architecture 
itself might be more worthwhile than increasing the model complexity.

+  Our models enable efficient transfer learning for cheaper data generation.
−  Our transfer learning tests lack results on a more rigorous and expensive detector simulation.
−  The combination of different models introduces an increase of hyperparameters to be optimized.

Further improvements and research are possible in multiple aspects of this work. It might be possible to 
improve the performance by introducing better feature parts for the DirectRanker. While CNNs have proven to 
produce competitive results here, it might be possible to find network architectures that exploit the correlations 
between data features in a more optimized way. It might also be instructive to further investigate our transfer 
learning approach. One could conduct experiments on different kinds of data sets that better represent the 
notion of precise and less precise data or try to pre-train different parts of the model. Additionally, it would be 
interesting to check if our approach also works for data from other physical processes than the Higgs production 
via VBF. Different production channels of the Higgs boson or altogether different particle physics processes and 
experiments would be possible candidates here.

Methods description
In this section, we elaborate the machine learning approaches used in this work in more detail. The two primary 
methods that have been used are convolutional neural networks (CNNs) and the DirectRanker. To provide a 
model combining the benefits of these approaches, we will subsequently illustrate how to join these two tech-
niques. Furthermore, we explain in detail the performed experiments we did to evaluate the performance of the 
different approaches.

Model descriptions. Convolutional neural network. Convolutional neural networks (CNNs)36 are robust 
against scaling, shifting and disordering of the input data by taking local dependencies into account. Classifying 
local dependencies like a nose in a human face or parts of music or sentences, makes the approach a favourable 
candidate for image, sound and text analysis. In the same way, they can be employed in classification of the data 
at hand since some of the adjacent features also exhibit meaningful, physical dependencies. To ensure dependent 
variables from the same physical origin can be employed correctly, we ensure these variables also exhibit a close 
proximity within the input data ordering. For example, the features which correspond to the leptons are grouped 
together in the input representation. The architecture of the used CNN in this paper was mainly taken from the 
Master thesis of  Pensel28. In the supplementary material, a more concrete motivation of the used parameters is 
given. In the following, CNN layers are used to generate additional feature combinations for the ranking model.

DirectRanker. As a generalization of  RankNet16, the DirectRanker was introduced by Köppel et al.12. A total 
quasiorder on the feature space is induced, since the model architecture leads to a pairwise ranking function 
that is reflexive, total and transitive by construction. The authors showed that this method can outperform other 
state-of-the-art ranking approaches including list-wise approaches while only requiring a fraction of the compu-
tation time and smaller amounts of data for training. The structure of the model starts with two identical feature 
extraction networks, called feature part (see nn1 and nn2 in Fig. 3). Originally these two networks consist out of 
simple, fully connected neural networks but could in general be more complex functions of the input features. 
This is how we extend that model here by using CNN layers for further feature combination, as illustrated in 
the following section. The outputs of the feature extraction part are subsequently subtracted from each other. 
Finally, the single neuron ( o1 ) takes the output of this subtraction and maps the pair of data instances onto a 
single number r, which represent the ranking function of the model, where r > (<) 0 means the first (second) 
instance is the preferable one. This part of the DirectRanker is called ranking part. By choosing the two feature 
extraction networks to be identical and the output neuron to obtain a sign-conserving activation and zero bias, 
we obtain reflexivity, totality and transitivity of the relation defined by r with respect to the two input instances.

DirectRanker for ranking Higgs boson candidates. By incorporating CNN layers to the feature extraction part of 
the DirectRanker, the used approach can be extended to be more suitable for ranking Higgs boson candidates. 
Specifically, the CNN layers are used to extract new features from the original ones. The combination of original 
and new features are then used as input to the DirectRanker, as described above and depicted in Fig. 3. The 
number of neurons in the final layer of the CNN extraction part can be used to fine-tune the influence of the 
convolutional layers to the overall ranking prediction. Similarly to the simple DirectRanker, both CNN layers 
employed in the two feature parts have to be identical to ensure the overall properties of the ranking function. 
To provide features of similar magnitude to the fully connected network, an additional batch normalization 
 layer37 is applied to the output of the CNN. The so constructed combination will be called CNN + DirectRanker 
throughout this work.
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Experimental setup. Data generation. The used signal and background processes are simulated using 
Monte-Carlo techniques. The Higgs signal is generated with  MadGraph56 at NLO (next-to-leading order in per-
turbation theory) using Higgs Effective Field  Theory34,35 and combined with the parton shower from  PYTHIA88. 
The background processes tt̄ , WW2j and Z2j are simulated using the same generators. For generating the detec-
tor response, the DELPHES framework for fast simulation of a generic collider  experiment7 was employed. Our 
main focus was set to simulate data for the the ATLAS detector. Before employing the data for the performance 
experiments, basic quality cuts are  performed38. The used cuts require having 2 leptons and > 2 jets in the final 
state. The features extracted from these simulated data contain the energy, the transverse momentum, the polar 
angle in the plane transverse to the particle beam, and the pseudorapidity for the first, second, and third jet 
and for the first and second lepton. Pseudorapidity describes the angle of a particle relative to the beam axis. 
Moreover, the number of jets, the number of leptons, and the missing transverse energy is provided. Out of these 
features 9 further physically motivated features are constructed. An accurate table of all employed features can be 
found in Supplementary Table 1 of the supplemental material. Apart from this, the detector parameters used in 
the DELPHES framework were changed to generate different feature distributions. For this purpose, the detector 
card from CMS was used and also the magnetic field of the ATLAS detector was changed from 2T to 2.1T. In 
Table 2 an overview of all the simulated data is shown. Frequently, the same number of signal and background 
events are simulated to have a balanced data set to train the machine learning model. The models are trained 

Figure 3.  Adaptation of the DirectRanker architecture to use convolutional layers to extract additional 
features from the inputs. The two convolutional networks share their parameters and architecture. After the 
convolutional layers, a fully connected layer is used the further reduce the extracted features before they are 
concatenated with the original ones. The concatenated features are then fed into the original DirectRanker 
 model12. During training, a batch normalization  layer37 is used before the extracted features are added to the 
primary ones to prevent overfitting.

Table 2.  Overview of the number of instances in the generated data sets after applying the quality cut of 2 
leptons and > 2 jets. ATLAS-2.1T indicates that the magnetic field in the ATLAS DELPHES detector card was 
changed from 2T to 2.1T.

DELPHES card # t t̄ # WW2j # Z2j # Higgs

CMS Detector 400 k – – 400 k

ATLAS-2.1T 42 k – – 34 k

ATLAS 2 M 280 k 230 k 340 k



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13094  | https://doi.org/10.1038/s41598-022-10383-w

www.nature.com/scientificreports/

on these numerically generated data and could later be used to classify signal events on data from the experi-
ment. In contrast to the simulated data, the real detector data contains only a minor fraction of signal events, 
as the cross section of signal events is relatively small compared to the background processes. We experiment 
with both signal-to-background ratios by splitting the data into two subsets to evaluate the model’s performance 
when trained on balanced data and on a realistic signal-to-background ratio. One subset contains around 300 k 
Higgs events and 300 k tt̄ events, later called the balanced data set. The other subset contains 300 of Higgs events 
and 300 k tt̄ events, which we refer to as the unbalanced data set. The number of events are calculated with an 
integrated luminosity of 156fb−1.

Evaluation metric. For the evaluation of the models the following two metrics are used: Firstly, the gen-
eral known AUROC (Area Under the Receiver Operating characteristic Curve), referred to here as AUC, is 
employed. Secondly, the likelihood-based statistical significance ( Z0 ) for the discovery of a new  process39 is used. 
We use Z0 , defined as

which represents a special case of the approximate median significance (AMS) metric used for the Kaggle Higgs 
boson  challenge33. s is equal to the number of true positives and b to the number of false positives scaled to the 
number of events to be expected in the detector.

Computing infrastructure. All neural network models were built with  Tensorflow40. The scikit-learn 0.24.2 
 library41 was utilized for boosted decision trees. The Higgs events were generated with  MadGraph56 using Higgs 
Effective Field  Theory34,35 and combined with the parton shower from  PYTHIA88. The background processes 
tt̄ , WW2j and Z2j are simulated with MadGraph5 and the parton shower from PYTHIA8 only. The detector 
response is generated with the DELPHES framework for fast simulation of a generic collider  experiment7. All 
experiments and simulations were executed on an Arch Linux system with an  Intel® Core™i7-6850K CPU @ 
3.60GHz with 32 GB of RAM and an nVidia GeForce GTX 1080 Ti with 10 GB of memory. In Table 3 the train-
ing time of the different models evaluated over fivefolds of the balanced data set is given. The used hyperparam-
eters are those of the best performing models (see the Supplement).

Setup data set and model complexity analysis results. To evaluate the model performance of different neural 
network architectures, we compared the DirectRanker, a convolutional neural network (CNN), a multilayer 
perceptron (MLP) and the combination of the DirectRanker with convolutional layers (CNN + DirectRanker). 
The data employed in the following two experiments uses tt̄ for background and Higgs for signal events. Both 
data sets are simulated with the ATLAS detector card using DELPHES.

For the first experiment, we evaluated the model performance while changing the data set ratio of the training 
data. For this, we increased the ratio between signal and background samples in the training data set, starting 
from a minor fraction of signal events up to an identical number of signal and background events. For test-
ing, we always used an equal number of signal and background events. The DirectRanker was set up with two 
hidden layers in the feature part, where the first one contained 20 neurons and the second one only 2. For the 
MLP, we fixed the architecture to three hidden layers, where the first one had 64, the second 20, and the last 
one 2 neurons. Beside this, we employed dropout layers after each hidden layer in the the MLP approach. We 
additionally used weight regularization to prevent the model from overfitting. The CNN model had a kernel 
size of 3 with 64 filters in one convolutional layer followed by a fully connected layer with 50 neurons. For the 
CNN + DirectRanker model, we used the parameter setting and architectures as for the DirectRanker and the 
CNN individually. The results are shown in Fig. 1a, where the mean value of Z0 of a fivefold cross-validation is 
used as performance metric.

Figure 1b presents the results when the ratio between signal and background is balanced in both, the train-
ing and the test data sets. In this test, the model complexity is changed to evaluate the relation between model 
performance and model complexity. The complexity of the model is expressed as the absolute number of trainable 
parameters. To increase the number of trainable parameters, we increased the number of layers for the Direc-
tRanker and the MLP. More specifically, we selected the number of neurons in each layer to be n+m+ 2 , where 
n is the number of input neurons (32) and m the number of output neurons (1) following the approach of Deep 
Narrow  Networks42 to fulfill the requirements of the Universal approximation theorem. The CNN contained 
only one convolutional layer, a kernel size of 3 and one fully connected layer. For changing the complexity, we 

(1)Z0 =

√

2

(

(s + b) ln

(

1+
s

b

)

− s

)

,

Table 3.  Mean training time of the different models evaluated on fivefolds of the balanced data set.

Model Runtime [s]

DirectRanker 81± 2

CNN+DirectRanker 162± 8

CNN 16± 0

MLP 60± 4

BDT 789± 64



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13094  | https://doi.org/10.1038/s41598-022-10383-w

www.nature.com/scientificreports/

increased the number of filters in the convolutional layer from 2 to 128 filters and varied the number of neurons 
in the fully connected layer from 2 to 50. The CNN + DirectRanker used the same parameters as the CNN, while 
the two ranking parts had both one hidden layer with 10 neurons. Figure 1b reports the results for each model 
at different complexities using a fivefold cross-validation with Z0 as performance metric.

Setup transfer learning results. A realistic detector simulation can be computationally extremely expensive. 
Therefore, only a few events per channel can be generated. Using transfer learning techniques can result in com-
parable or even better results as for precisely generated data (we use the term imprecise and precise as synonyms 
for fast and full detector simulation, respectively). As the precise simulations are exclusively available to the 
ATLAS Collaboration, we instead emulated the precise data by slightly tweaking the simulation parameter in 
order to generate data from a different, yet similar, distribution. We introduced three distinct emulations of the 
precise data which are detailed in the section on data generation. In the following we refer to these emulations 
as precise data in the context of our experiments. The data generated with the standard ATLAS Delphes-card 
are referred to as imprecise. This allowed us to test the transfer learning approach with a CNN model that was 
trained on the imprecise data and then extended with the ranking part of the DirectRanker for transfer training 
on the precise data. The ranking model constructed in this way can converge faster on the precise data, since 
the pre-trained CNN layers provide a much better adapted starting point than randomly assigned  weights29. We 
compared this approach to a CNN + DirectRanker model, which was trained on the whole data set without any 
pretraining, and to a CNN model, which was pre-trained on the same imprecisely generated data, and then also 
retrained on the precise one. To quantify the difference of the data sets and their underlying feature distributions, 
we used the Kolmogorov–Smirnov32 (KS) test. The results for individual features are summed up individually 
and normalized. To determine the best performing pre-trained CNN model, a fivefold cross-validation was 
performed using 150,000 imprecise signal and background events each. Subsequently, the best performing CNN 
model was selected and the ranking component was retrained on 30000 samples of precise data. The hyperpa-
rameter optimization for the retrained model was done by splitting the precise data into a fivefold split. On each 
fold, an internal fivefold cross-validation was conducted to find the best hyperparameters, while model perfor-
mance was evaluated on the external folds. The retraining of the CNN-only approach was performed employing 
a similar procedure. As for the CNN + DirectRanker, the imprecise data for the CNN model and the precise data 
for the retrained model were combined to perform a hyperparameter optimization. The model performance was 
again evaluated using the same separate split of precise data. In Table 1, the mean of Z0 from the external fivefold 
cross-validation and the KS values are shown.

Setup overall model performance. To assess overall performance, we compared our model on different data sets 
with current state-of-the-art methods. Beside the different neural network approaches, the BDT, which represent 
the state-of-the-art method for the vector boson fusion channel, was included in this evaluation. For these, three 
data sets are used. The first one included a balanced number of signal and background events in the training 
and test set. The second one provided an unbalanced number of signal and background events in the training 
set but a balanced amount in the test set. The last data set in this experiment is the Higgs Boson  Challenge33. For 
all model-data-set-combinations, we performed an internal fivefold grid search over different hyperparameters. 
The model performance is evaluated using AUC and Z0 on an external fivefold split. The best overall hyperpa-
rameter values were evaluated by counting how many times they performed the best on the external 5 sub-folds. 
Some hyperparameters produced no convincing winner, since there was no majority in the overall performance.
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